Richardson’s Theorem for k-colored kernels in strongly connected digraphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On spectral radius of strongly connected digraphs

 It is known that the directed cycle of order $n$ uniquely achieves the minimum spectral radius among all strongly connected digraphs of order $nge 3$. In this paper, among others, we determine the digraphs which achieve the second, the third and the fourth minimum spectral radii respectively among strongly connected digraphs of order $nge 4$.  

متن کامل

Degree sequence for k-arc strongly connected multiple digraphs

Let D be a digraph on [Formula: see text]. Then the sequence [Formula: see text] is called the degree sequence of D. For any given sequence of pairs of integers [Formula: see text], if there exists a k-arc strongly connected digraph D such that d is the degree sequence of D, then d is realizable and D is a realization of d. In this paper, characterizations for k-arc-connected realizable sequenc...

متن کامل

Strongly Connected Multivariate Digraphs

Generalizing the idea of viewing a digraph as a model of a linear map, we suggest a multi-variable analogue of a digraph, called a hydra, as a model of a multi-linear map. Walks in digraphs correspond to usual matrix multiplication while walks in hydras correspond to the tensor multiplication introduced by Robert Grone in 1987. By viewing matrix multiplication as a special case of this tensor m...

متن کامل

K-colored Kernels

We study k-colored kernels in m-colored digraphs. An m-colored digraph D has k-colored kernel if there exists a subset K of its vertices such that (i) from every vertex v / ∈ K there exists an at most k-colored directed path from v to a vertex of K and (ii) for every u, v ∈ K there does not exist an at most k-colored directed path between them. In this paper, we prove that for every integer k ≥...

متن کامل

Cyclically k-partite digraphs and k-kernels

Let D be a digraph, V (D) and A(D) will denote the sets of vertices and arcs of D, respectively. A (k, l)-kernel N of D is a k-independent set of vertices (if u, v ∈ N then d(u, v), d(v, u) ≥ k) and l-absorbent (if u ∈ V (D) − N then there exists v ∈ N such that d(u, v) ≤ l). A k-kernel is a (k, k − 1)-kernel. A digraph D is cyclically k-partite if there exists a partition {Vi} i=0 of V (D) suc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2016

ISSN: 0166-218X

DOI: 10.1016/j.dam.2015.09.010